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ABSTRACT

This paper describes a cloud forecast technique using lag cross correlations. Cloud motion vectors are retrieved
at a subset of points through multiple applications of a cross-correlation analysis. An area in the first of two
sequential frames of satellite data is correlated with surrounding areas in the second frame to find the one
surrounding area best correlated. The location difference of the areas defines the displacement vector. An objective
analysis is used to define displacements at every .satellite pixel throughout the domain and smooth the local
inconsistencies. Using these displacements, forecasts are then produced with a backward trajectory technique.
This scheme was tested using two IR satellite images of the same scene a half-hour apart and found to generate
realistic, high-quality forecast IR pixel images. Results demonstrate improvements over persistence and movable
persistence for forecasts of a few hours’ length. The technique is visually appealing, since forecasts are created
in pixel images of the same form and resolution as the initializing satellite data, permitting animation. It is also

computationally inexpensive.

1. Introduction

Cloud forecasting has been an active research area
over the last decade, primarily because of the first-order
influence of clouds on climate. Most of the operational
weather forecast and climate models now include a
diagnostic, cloud forecast scheme. However, these
schemes were tailored to produce realistic cloud
amounts for forecasts on the order of days, not hours,
and at resolutions on the order of 100 km. There are
many users and potential users for shorter-range, high-
resolution cloud forecasts. For example, military and
civilian aviation need forecasts of obstructions to vision
and information on weather affecting runway condi-
tions. Television weathercasters may appreciate cloud
forecasts that can be used to illustrate near-term
changes to weather conditions. This article describes a
cloud forecast scheme useful for such applications.
Though originally developed for the U.S. Air Force
Automated Weather Distribution System, a forecaster
workstation, this forecast tool may be useful to a wider
variety of users.

This short-range cloud forecast algorithm is based
on the technique of lag cross correlations (Panofsky
and Brier 1968). Using two sequential GOES IR im-
ages, cloud motion vectors (or “displacement vectors™)
are derived by correlating an area of the earlier image
to surrounding areas in the later image. The area in
the later image with the highest correlation is presumed
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to represent the displacement from the first image (Fig.
1). The technique has been used previously for satellite-
derived winds ( Merrill 1989), for cloud and rain fore-
casts (Bellon et al. 1992), and for radar-derived
boundary-layer winds ( Tuttle and Foote 1990). Using
this basic building block of a cross-correlation analysis,
an application of this technique to the production of
IR cloud forecast images is described. Once the cor-
relation analysis and subsequent objective analysis has
defined a wind field, forecasts are made through a
backward trajectory computation. The technique is
suitable for short-range forecasts and can be run in a
few minutes on current generation workstations. It is
a mapping of a complex three-dimensional process to
two dimensions, and as such, unduly simplifies the
problem. As will be shown, it is at least a more appro-
priate simplification than other common computa-
tionally inexpensive alternatives.

This short-range forecast method is not compared
against longer-range cloud forecast schemes here; it was
specifically designed for nowcasting applications, (0-
3 h), where advection is usually an appropriate first-
order approximation. Beyond this length of time, de-
velopment and dissipation generally become first-order
effects. There are longer-range forecast schemes (e.g.,
Slingo 1987; Sundquvist et al. 1989; Mitchell and Hahn
1989) that implicitly account for this development and
dissipation—schemes that typically require the exe-
cution of a dynamic forecast model. They have their
own set of drawbacks, such as coarser spatial resolution,
inaccuracy during the beginning forecast intervals due
to model spinup, and dependence on relative humidity,
which is notoriously difficult for numerical weather
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FiG. 1. lllustration of correlation analysis and derivation of the
displacement vector. The displacement vector is directed from the
center of the correlation box in image 1 to the center of the correlation
box in image 2 most highly correlated with image 1.

prediction models to predict accurately. There is a
crossover point between 3 and 18 h where these longer-
range forecast schemes become more skillful than tra-
jectory schemes. However, any crossover point for this
scheme would be especially hard to determine since
the output is a high-resolution pixel forecast, not a
lower-resolution cloud amount forecast. Testing of the
cross-correlations scheme was confined to a 0-2.5-h
envelope; no comparisons are made with longer-range
techniques.

Section 2 gives a detailed description of the forecast
algorithm. Section 3 presents results from verification
studies at both the large scale (central and eastern
United States) and smaller scale (domains the size of
states). Section 4 provides conclusions and recom-
mendations for further enhancements.

2. Algorithm description

The cross-correlation technique has been applied to
both large-scale forecast domains and smaller ones,
with positive skill demonstrated for each. The algo-
rithm for both is basically the same; the differences
between large and small domain applications are the
spacing between points selected for correlation analysis
and the values of objective analysis parameters such
as the influence radius. Specification of these param-
eters is delayed until the results section.

a. Retrieval and quality control of cross-correlations
vectors

At the heart of this prototype cloud forecast tech-
nique is the derivation of displacements vectors (i.e.,
“advective” velocities) through a cross-correlations
analysis. The technique is as follows: a subset of pixels
defining an area in the first image in a satellite loop is
chosen. For the purpose of illustration in Fig. 1, this
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subset is 8 X 8; in our actual prototype scheme, the
subset chosen is 15 X 15. Next, based on the maximum
possible wind displacement in a half-hour, a search
radius is defined and identically sized subsets of pixels
from the second image with centers inside the search
radius are correlated against the subset from the first
image. If the scene has a single cloud layer, then the
displacement vector for this layer will be defined by
the vector from the center of the subset in image 1 to
the center of the subset with the maximum corrélation
in image 2. This is illustrated in Fig. I, and a sample
plot of correlation coeflicients and a derived displace-
ment vector are shown in Fig. 2. This cross-correlations
analysis is repeated at a regularly spaced subset of points
throughout the domain, and displacement vectors for
all points are then derived through an objective anal-
ysis.

As initially calculated, the correlations technique can
derive vectors unsuitable for trajectory forecasts. There
are three main problems requiring quality control
(QC). 1) If small areas are used for the correlation
analysis, the displacement vector may be inaccurate,
reflecting a random high correlation and not a true
advective wind velocity. 2) There may be multiple
cloud layers, in which case a single displacement vector
may not be applicable for that region (Leese and Novak
1971). 3) If the frame is clear, then the displacement
vector will be null, even if strong winds are present
through the clear scene. Use of the null wind in a tra-
jectory forecast will prevent clouds from moving into
the clear region. . '

The first problem, inaccurate vectors and resultant
displacement field noisiness, can be corrected in many

N NG
i’: 16/ ‘ V)/’/'/f’;\‘\pjc
g 12 /ﬂl/)g)\\ _a;[ /§7
=
g 4 \ (/ i 4] /“\901
> 0 \\é}\\x J/g///

Q 4 8 12 16 20 24
x—pixel location (12=center)

FIG. 2. Example of a correlation field used in the derivation of a
displacement vector. The point (12, 12) is the center of the original
correlation box. The displacement vector originates at this point and
ends at the point with the highest correlation.
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F1G. 3. A frame of the satellite imagery used in the demonstration
correlation analysis. Data is over the central and eastern United States,
valid at 1230 UTC 20 November 1991.

ways. First, the size of area to correlate can be increased,

decreasing the chance of a random maximum corre-

lation. However, this increases computations. The

choice of a 15 X 15 correlations area (here, with ~11-

km pixel resolution) was a compromise between ex-

cessive CPU time and too many random vectors. Sec-
ond, a local consistency check can be applied, com-
paring each derived vector against its neighbors. For
this scheme, displacement vectors that deviate more
than the width of four pixels from the local mean vector
are replaced by the local mean. (Other deviations were
tried, but four pixels gave the best result.) Figure 3
shows a frame of the remapped GOES IR satellite im-
agery used in the correlation (1230 UTC 20 November
1991). Figure 4 shows a field of correlation displace-
ment vectors derived from data between 1200 and 1230
UTC 20 November 1991, illustrating typical noise.
Figure 5 shows the same field of displacement vectors
after application of the consistency check. This set of
vectors is temporally consistent; for example, compare
the results in Fig. 5 with those in Fig. 6, which shows
the derived (and adjusted) vectors for the frames 0.5
h later, from 1230 and 1300 UTC imagery. A third
possible correction for noisiness may be found through
the use of a more sophisticated (and computationally
intensive) cross-correlations algorithm. One such al-
gorithm is the affine model (Fuh and Maragos 1991).
This is a multidimensional minimization algorithm
that not only finds the displacement with the highest
correlation but also checks a range of image rotations
and shape changes. This technique was not tried but
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FIG. 4. A sample of the raw displacement vectors derived from
two successive frames of GOES imagery, 1200 and 1230 UTC 20
November 1991.

may show promise in a few years with faster worksta-
tions.

Multiple cloud layers can seriously affect the accu-
racy of wind observations retrieved from satellite data
(cloud-track winds). However, our focus is on pro-
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FIG. 5. Displacement vectors from Fig. 4 after quality control
through a consistency check, examining and replacing wind vectors
that deviate excessively from surrounding points.
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F1G. 6. Displacement vectors derived from images 0.5 h later
(and processed through consistency check).

ducing a field of reasonable displacement vectors. A
vector derived in a region with multiple cloud layers
will usually be weighted to the cloud layer with the
most contrast and will thus be most appropriate for
forecasts of features discernible in the satellite imagery.

Null displacement vectors are derived when the an-
alyzed subsets are cloud free. The movement of a cloud
edge is often one of the most crucial features to forecast,
and use of these null vectors in trajectory calculations
will cause anomalous slowing of these features. Thus,
a restriction is imposed during the objective analysis
step, whereby null displacement vectors are removed
from use as observations. As a result, advective veloc-
ities at cloud edges are not affected by null displacement
vectors, and leading and trailing cloud edges are ad-
vected at more appropriate speeds. However, without
correction, clear areas in front of the advancing clouds
are also advected. This presents no problem when the
clear-scene background is homogeneous, but promi-
nent surface features such as lakes may appear to move.
Though not attempted yet, this problem could be cor-
rected through the identification of cloudy and clear
pixels by a nephanalysis such as is done in Hamill et
al. (1992). Cloudy pixels could then be explicitly fore-
cast while clear pixels are persisted or replaced with a
mask such as a colored background, as is often seen
on commercial TV satellite loops.

Although there are drawbacks to defining advective
velocities through a correlation analysis, there is one
notable benefit. Assume there is only one cloud layer
in a given area and advection (rather than development
or dissipation ) is dominant. If so, then a correlations-
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based scheme derives more reasonable displacement
vectors than are achieved using an arbitrarily selected
single-level wind such as a 500-mb wind field. Wind
magnitudes generally increase with height, so by using
the cross-correlations technique, areas of low cloud will
have smaller magnitude displacement vectors than
neighboring areas with high cloud. In essence, the tra-
jectory wind field over the domain is appropriately
warped to the local height of the clouds.

b. Objective analysis

The next step after retrieval and consistency checking
of displacement vectors is to produce gridded displace-
ment vectors for every pixel in the domain. This is
done by an objective analysis, chosen to smooth the
vector field slightly and produce a continuous flow pat-
tern. A multipass successive corrections scheme
(Cressman 1959) is used. The first pass defines G1, the
first guess at pixel (i, j):

nobs

Z [W2D(xn, yn)]
Gl(i, j) ==

(1)

nobs

gl (W)

Here, W is the standard isotropic Cressman weighting
function, dependent on the distance between the ob-
servation and the analysis point and a prespecified ra-
dius of influence (see section 3); D is the displacement
vector velocity for the observation at location (x,, y,);
and U and V components are analyzed separately in
this process. The relation in (1) is used rather than the
standard Cressman relation (2 (W D)/ 2 W) to avoid
discontinuities in data-sparse regions, as explained in
Benjamin and Seaman (1985). The second pass cor-
rects the first pass according to

G2(i,j) = G1(, )
nobs

Z {WZ[D(XVH yn) - Gl(x,,, yn)]}

n=|

+ (2)

nobs ’

z ()

where G2 represents the corrected analysis value. When
a third pass is used, it is of the same form as the second
pass, with G3 and G2 replacing G2 and Gl, respec-
tively.

The effect of eliminating null vectors from the ob-
jective analysis is illustrated in Figs. 7 and 8. Figure 7
shows an objective analysis of the data in Fig. 5 in
which the null vectors are used. Figure 8 shows the
implemented version in which the null vectors are de-
leted. As can be seen in the upper-left corner of the
domain, the influence of the cloudy-area wind field is
spread into the clear areas, resulting in stronger (more
appropriate ) magnitude winds along cloud edges. The
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FiG. 7. Objective analysis of data from Fig. 5, without
null displacement vectors eliminated.

scheme was tested out to 2.5 h; if the scheme is to be
used for longer-range forecasts, the first-pass radius of
influence should be increased to magnify the spreading
effect.

Null Elimination
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FIG. 8. Objective analysis of data from Fig. 5, with
null displacement vectors eliminated.
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F1G. 9. Illustration of the inappropriateness of using cross-corre-
lation displacement vector directly in curved flow. For straight, non-
divergent flow (Fig. 9a), the displacement vector at F(i, j) can be
applied upstream to find the originating location of the trajectory
O(a, B). However, in curved flow (Fig. 9b) the vector upstream is
not identical, so a compromise vector O'(«, 8) that does advect to
F(i, j) is determined through the semi-Lagrangian scheme.

c. Semi-Lagrangian trajectory forecast

To produce forecast images, pixel intensities from
the latest satellite image are advected using the analyzed
displacement vectors. Before the trajectory technique
is performed, however, the U- and V' -component half-
hour displacement vectors are modified slightly through
a passive 2D semi-Lagrangian scheme (Staniforth and
Cote 1991). The use of a semi-Lagrangian displace-
ment vector rather than the original displacement vec-
tor itself markedly improves the trajectory forecasts in
areas where the wind field at the trajectory end point
differs significantly from the wind field at the trajectory
origin, such as in curved flow. In essence, this scheme
iterates to find the most representative half-hour tra-
Jectory. This is shown in Figs. 9a,b; in Fig. 9a, straight,
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nondivergent flow allows the calculated downstream
displacement vector at forecast location F(i, j) to be
applied upstream to find the originating pixel at O(«,
B3). However, as shown in Fig. 9b, in curved flow the
displacement vector at the upstream location O(«, )
differs from the downstream displacement vector, so
a compromise vector O'(«, 8) that actually advects to
forecast location F(i, j) must be determined. The semi-
Lagrangian technique iterates to determine this vector.

With corrected displacement vectors calculated, a
simple backward-in-time trajectory is applied to the
latest satellite data to make forecast images. For a
backward scheme, the trajectory end points for time
interval ¢(i) are known; they are the regular set of grid
points for the domain. Using the semi-Lagrangian vec-
tors, the scheme finds the trajectory origin at time #(i
— 1/2 h), and then a bilinear interpolation of the sur-
rounding four pixel values is performed to determine
the forecast pixel value. (Changes in brightness along
the trajectory were tried as an additional predictor, but
this did not improve the forecasts.) If the trajectory
origin is outside the domain, the trajectory is assumed
to originate at the nearest border point. The forecast
scheme steps forward in half-hour intervals, with each
successive forecast frame used in the initialization of
the next step. The same velocity field and trajectory
calculation 1s used for each forecast interval.

There are consequences from determining the fore-
cast pixel value through bilinear interpolation. Though
yielding a more accurate trajectory computation, its
use results in a progressive smoothing of cloud features.
The simplest alternative—rounding the trajectory cal-
culation to the nearest pixel—would preserve sharpness
of the original image but at the expense of a loss of
accuracy. The use of bicubic splines rather than bilinear
interpolation or the use of a noniterative trajectory
technique may reduce or eliminate this problem, but
these alternatives have not yet been tested.

Inaccuracies along the boundary are a natural con-
sequence of a limited-area domain, and a daunting
problem. The only proper solution is to widen the
forecast domain and display only the model forecast
for the inner, unaffected part. This would slightly in-
crease the computational expense.

3. Results

Our prototype cloud forecast scheme has now been
tested with satellite images over the central United
States for each season. It shows skill over persistence
for all time periods tested (0.5-2.5 h in half-hour in-
crements). The scheme was also tested side by side
with a similar advection scheme using the 500-mb
winds, and comparison tests were made using a contour
extrapolation method.

a. Comparison with persistence and 500-mb
advection forecasts

The domain used for the large—scalé tests in this study
1s a Lambert conformal map projection covering the
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TABLE 1. Comparison of rms errors for 10-case ensembles of
correlation, 500 mb, and persistence forecasts for each of the four
seasons, and for each forecast interval. Units are gray-shade values,
which range from 0 to 256 in the original imagery

Forecast Corrclation 500-mb Persistence
hour Season rms rms rms

15 Fall 9.13 — 12.32
Winter 8.57 9.36 11.30

Spring 8.98 — 11.95

Summer 11.28 11.63 13.96

1 Fall 12.87 — 16.21
Winter 11.67 12.82 14.98

Spring 12.55 — 16.04

Summer 16.32 16.99 19.77

114 Fall 15.35 — 18.59
Winter 14.19 15.22 17.38

Spring 14.99 — 18.55

Summer 19.94 20.61 23.46

2 Fall 17.27 —_ 20.48
Winter 16.12 17.09 19.23

Spring 17.02 — 20.51

Summer 22.77 23.44 26.36

21h Fall 18.95 — 22.16
Winter 17.79 18.64 20.83

Spring 18.64 — 22.19

Summer 25.25 25.82 28.78

eastern two-thirds of the United States and southern
Canada as in Fig. 3. Raw GOES IR imagery was re-
mapped into a 256 X 256 set of pixels in this projection,
with an approximate resolution of 11 km. Displace-
ment vectors were calculated over a regular array of
16 X 16 points inside the satellite image, as illustrated
in Fig. 4. A three-pass objective analysis was used, with
the radius of influence set at 990, 660, and 440 km for
the first, second, and third pass, respectively.

The pixel forecasts were then compared against the
verification images over the full domain, including
areas contaminated by boundary condition errors. An
ensemble of 40 forecasts, 10 for each season were made,
and rms errors (in pixel gray-shade values) were cal-
culated using the observed satellite imagery for verifi-
cation. Summed over all four seasons, there was an
even split between daytime and nighttime forecasts.
Verification in pixel gray-shade values is convenient
for calculation, but because of the change in sensitivity
in GOES IR count at —22°C (i.e., change in brightness
temperature per gray shade), by using this there is a
bias of the rms errors toward performance of the higher
clouds, in terms of coverage. With this in mind, rms
errors of the correlations forecasts and of persistence
were compared. For all tests and all times, the corre-
lations-based advection scheme showed less rms error
than persistence ( Table 1). As shown, both persistence
and the correlation method exhibit higher errors in
summer than in winter. From visual inspection of the
cloud forecasts, this was clearly due to the dominance
of convective development and dissipation over ad-
vection during the summer months. Conversely, during
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FIG. 10. Satellite analysis (top), verification (middle), and 2.5-h
correlation forecast (bottom ) started from data at 1430 UTC 20 April
1991.

FiG. 11. Satellite analysis (top), verification (middle), and 2.5-h
correlation forecast (bottom) started from data at 1430 UTC 1200
UTC 20 November 1991,
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the winter, advectlve processes seemed to dominate,
and both persistence and the correlations technique
show smaller errors, and the percentage improvement
of correlations-based forecasts over persistence is
greater in winter than in summer.

Figures 10 and 11 show examples of two forecasts,
along with the initial conditions and verification data.
Close examination shows that there are noticeable dif-
ferences between the forecast and verification satellite
data, though the basic propagation of features is han-
dled well. The terrain advection problem can be seen
in Fig. 10 bottom, where Lake Michigan appears to
move. Figure 11 bottom illustrates the problem of
boundary conditions; the northwest corner is improp-
erly forecast due to strong cross-boundary flow into
the domain. '

A reasonable alternative candidate to a correlations-
based forecast scheme is one using 500-mb winds for
displacement vectors (Nagle 1992). This option was
tested for the winter and summer cases (Table 1). The
correlations forecasts are clearly superior in the winter
but much closer to the rms of the 500-mb forecasts in
the summer. The generally higher rms in the summer
and the smaller rms difference between correlations
and 500-mb forecasts for summer cases is most likely
due to the dominance of convective development and
dissipation. During the summer, use of the 500-mb
wind field as a steering current for thunderstorms gen-
erally makes as much sense as correlations-derived
winds, which cannot be expected to produce reliable
‘wind vectors in regions of development and dissipation.
Conversely, during the winter months, the correlation
scheme’s ability to determine an accurate advecting
velocity regardless of the height of the cloud is likely
responsible for its higher skill.

Since synopticians may often use a fraction of the
500-mb wind velocity for the phase speed, it seemed
appropriate to .determine if lower-elevation winds
might yield more accurate forecasts. A few forecasts
were made using 700-mb winds instead of 500 mb; the
verification scores for this small sample were generally
worse. Forecasts with smoothed 500-mb fields were not
tried nor were combinations of 500-mb wind analyses
and correlation analyses nor the use of upper-air anal-
yses for a first guess in the objective analysis. Though
intuitively many of these ideas are defensible, this re-
search was originally designed to meet U.S. Air Force
needs for a forecast system that can be run at locations
where only satellite data is available. Applications for
data-rich environs may profit from the judicious in-
clusion of upper-air winds.

b. Contour extrapolation scheme comparison

Other techniques.exist for determining the evolution
of prominent cloud features, such as contour extrap-
olation methods (Heideman et al. 1990). If a forecast
subdomain is dominated by one cloud feature, then
the short-term movement can be forecast by bounding
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the feature with a contour at a given pixel brightness,
contourmg the feature, and linearly extrapolating the
feature using the change in centroid position. Figure
12 illustrates a sample case, showing the contours
overlaid on satellite imagery. Movement in successive
forecast frames is defined from the change in centroid

FIG. 12. The 0.5-h satellite data starting at 1500 UTC 20 November
1991, over Alabama-Mississippi, illustrating the bounding of a region
of significant weather with contours. Contours correspond to bright-
ness temperature 237.5 K.
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Fi1G. 13. Illustration of movable persistence contour forecast. The
change of center of mass from time (¢ — 1) to (¢) is used to define a
motion vector, and the shape at time (¢) is used as the shape for
successive forecast frames at times (¢ + 1), (¢ + 2), etc.

position between frame 1 and frame 2, and the shape
and size from frame 2 is preserved in successive forecast
frames. This is illustrated in Fig. 13. More details on
this “movable persistence™ scheme and comparisons
with other contour forecasting schemes are discussed
in Nehrkorn et al. (1993). One of the conclusions of
that report was the superiority of simple movable per-
sistence over more elaborate contour-based schemes,
which attempted to forecast shape and size changes as
well. Thus, the accuracy for correlations forecasts was
compared against the best alternative, simple movable
persistence.

For this comparison, a four-season database of 39
significant weather features was chosen, approximately
10 from each season, again, roughly split between half-
day (1200-0000 UTC start time) and half-night (0000-
1200 UTC). For each case, the satellite loop was ex-
amined for an interesting feature. A subdomain around
the feature and a contour level bounding the feature
were defined, and then results of the contour analysis
were stored for initialization and verification. The sat-
ellite loop examined for case selection used the same
domain as the previously mentioned large-scale fore-
casts, though the domain resolution was doubled to
approximately 5.5 km and the size doubled, to 512
X 512, for easier visualization. If there were extraneous,
smaller contours besides the main feature of interest,
they were disregarded in calculating centroids and de-
fining the displacement vector. Movable persistence
forecasts for the satellite image were then derived by
extrapolating the movement of the whole image- with
the displacement vector calculated from the change of
the centroid position.

The correlations forecast scheme was modified to
work over the smaller domain and produce a displace-
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ment wind analysis with somewhat finer-scale structure
than the coarse analysis from the synoptic-scale tests.
This was done in two ways: first, the spacing between
points for calculation of displacement vectors was re-
duced; actual spacing varied with the size of the sub-
domain. Next, the objective analysis was tuned to yield
more detail. A three-pass objective analysis was used
with influence radius that varied with domain size; the
first pass was 15 times the spacing between correlation
analysis vectors, the second pass 10 times the spacing,
and the third pass 6 times.

Movable persistence forecasts were then compared
against the cross-correlation forecasts. For comparison
of forecast accuracy, contingency-table-based skill
scores were used (Stanski et al. 1989) rather than pixel
rms. Our measurement criteria were the critical success
index (CSI), probability of detection (POD), and false
alarm ratio (FAR). Using the breakdown of areas
shown in Fig. 14, the scores can be defined as follows:

CSI = A/(A+B+C) (3)
FAR = C/(C + A) (4)
POD = A/(B + A), (3)

where A represents the cloud pixels correctly forecast,
C represents false alarms (forecast, no verification),
and B represents the misses ( verification, no forecast).
Scores for CSI, FAR, and POD range from 0.0 to 1.0;
high CSI and POD are desirable, as is a low FAR.
Graphs of mean CSI, FAR, POD as functions of
forecast time are shown in Figs. 15~17 with 5% con-
fidence intervals. As shown in Fig. 15, the CSI scores
for correlation forecasts are significantly better on av-
erage than movable persistence scores for 0.5- and
1-h forecasts, and they continue to exceed the skill of

FIG. 14. Illustration of two contours bounding a forecast area (C
+ A) and a verification area (B + A), and the breakdown into regions
of hits (area 4), false alarms (area C), and misses (area B).
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Mean CSI with 5% confidence intervals
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F1G. 15. Critical success index scores for correlations-based forecast
(solid) and movable persistence (dots) as a function of forecast in-
crement (each increment is 0.5 h). A CSI of 1.0 indicates a perfect
forecast, and 0.0 denotes no skill.

movable persistence for the longer forecasts, though
not by a statistically significant amount. Figure- 16
shows a similar trend for the POD, and Fig. 17 shows
that the FAR scores for correlation are significantly
better at the first time interval but become worse as
time progresses, though not by a statistically significant
amount.

Thus, we conclude that the correlations scheme ex-
hibits skill over movable persistence for at least the first
hour of the forecast. Because of this and because of the
greater utility of the correlations scheme, which is not
dependent on tracking contours that can split or merge,
we conclude that it is a more appropriate algorithm
for nowcasting of small features.

Mean POD with 5% confidence intervals
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FIG. 16. POD scores for correlations-based forecast (solid) and
movable persistence (dots) as a function of forecast increment. A
POD of 1.0 indicates a perfect forecast, and 0.0 denotes no skill.
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Mean FAR with 5% confidence intervals

CORRELATIONS
o6 _ ___ _ MOVABLE 7
PERSISTENCE ]
0.50~ —
-
< ]
0.40— -
030 .
r 1
1 1 1 A 1
0 1 2 4 5 6

forecast increment

FiG. 17. FAR scores for correlations-based forecast (solid) and
movable persistence (dots) as a function of forecast increment. A
FAR of 0.0 indicates a perfect forecast, and 1.0 denotes no skill.

4. Conclusions

A cross-correlations-based cloud forecast technique
has been developed that is skillful at extrapolating cloud
features. The output is a set of synthetic (predicted)
satellite images that may be looped in combination
with analyzed images. Because the form of the output
is identical to the input (pixel images), interpretation
is easy. The scheme is clearly an improvement over
persistence and gives the forecaster an informed, ob-
jective extrapolation of existing cloud features. The
prototype scheme described here does have a number
of limitations, including terrain advection, the inability
to work well in convective situations, the tendency to
smooth the forecast images with time, and occasionally,
unrealistic looking images along inflow boundaries.

Some relatively simple but computationally inten-
sive enhancements can be made to correct these prob-
lems, though the parameterization of developmental
and dissipative effects is sure to prove challenging. Ter-
rain advection can be eliminated through the coupling
of the cloud forecast with a nephanalysis and back-
ground mask, advecting only the pixels determined to
be cloudy. Boundary condition errors can be eliminated
by widening the domain; smoothing effects could be
mitigated by decreasing pixel size and eliminating the
use of bilinear interpolation or by eliminating the it-
erative process and calculating all trajectory origins for
every forecast frame as distinct points in the latest frame
of satellite data. Some improvement may be gained by
including conventional wind observations into the dis-
placement vector analysis. S
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